液氦
氦在岩石的缓慢的放射性衰变过程中形成的,几乎所有氦储备都是从天然气中提取的一种副产品。获得更多氦的唯一方法,是从氚衰变过程中获取。
元素符号He,原子序数2,原子量4.002602,为稀有气体的一种。元素名来源于希腊文,原意是“太阳”。1868年有人利用分光镜观察太阳表面,发现一条新的黄色谱线,并认为是属于太阳上的某个未知元素,故名氦。后有人用无机酸处理沥青铀矿时得到一种不活泼气体,1895年英国科学家拉姆赛用光谱证明就是氦。以后又陆续从其他矿石、空气和天然气中发现了氦。氦在地壳中的含量极少,在整个宇宙中按质量计占23%,仅次于氢。氦在空气中的含量为0.0005%。氦有两种天然同位素:氦3、氦4,自然界中存在的氦基本上是氦4。氦在通常情况下为无色、无味的气体;熔点-272.2°C(25个大气压),沸点-268.9°C;密度0.1785克/升,临界温度-267.8°C,临界压力2.26大气压;水中溶解度8.61厘米³/千克水。氦是唯一不能在标准大气压下固化的物质。液态氦在温度下降至2.18K时,性质发生突变,成为一种超流体,能沿容器壁向上流动,热传导性为铜的800倍,并变成超导体;其比热容、表面张力、压缩性都是反常的。氦是最不活泼的元素,基本上不形成什么化合物。氦的应用主要是作为保护气体、气冷式核反应堆的工作流体和超低温冷冻剂。
普通液氦是一种很易流动的无色液体,其表面张力极小,折射率和气体差不多,因而不易看到它。液态4He包括性质不同的两个相,分别称为HeⅠ和HeⅡ,在两个相之间的转变温度处,液氦的密度、电容率和比热容均呈现反常的增大。两个液相HeⅠ和HeⅡ间的转变温度称为λ点,饱和蒸气压下的λ点为2.172K,压强增加时,λ点移向较低的温度,两个液相的相变曲线为一直线,称为λ线。
液氦具有一系列引人注目的特点,
要得到液态氦,必须先把氦气压缩并且冷却到液态氢的温度,然后让它膨胀,使温度进一步下降,氦气才能变成液体。
液态氦是透明的容易流动的液体,就像打开了瓶塞的汽水一样,不断飞溅着小气泡。
液态氦是一种与众不同的液体,它在零下269℃就沸腾了。在这样低的温度下,氢也变成了固体,千万不要使液态氦和空气接触,因为空气会立刻在液态氦的表面上冻结成一层坚硬的盖子。
超流动性普通液体的粘滞度随温度的下降而增高,与此不同,HeⅠ的粘滞度在温度下降到2.6K左右时,几乎与温度无关,其数值约为3×10-6帕秒,比普通液体的粘滞度小得多。在2.6K以下,HeⅠ的粘滞度随温度的降低而迅速下降。HeⅡ的粘滞度在λ点以下的温度时立刻降至非常小的值(<10-12帕秒),这种几乎没有粘滞性的特性称为超流动性。用粗细不同的毛细管做实验时,发现流管愈细,超流动性就愈明显,在直径小于10-5厘米的流管中,流速与压强差和流管长度几乎无关,而仅取决于温度,流动时不损耗动能。
氦膜任何与HeⅡ接触的器壁上覆盖一层液膜,液膜中只包含无粘滞性的超流体成分,称为氦膜。氦膜的存在使液氦能沿器壁向尽可能低的位置移动。将空的烧杯部分地浸于HeⅡ中时,烧杯外的液氦将沿烧杯外壁爬上杯口,并进入杯内,直至杯内和杯外液面持平。反之,将盛有液氦的烧杯提出液氦面时,杯内液氦将沿器壁不断转移到杯外并滴下。液氦的这种转移的速率与液面高度差、路程长短和障壁高度无关。
对HeⅡ性质的理论研究首先由F.伦敦作出。4He原子是自旋为整数的玻色子,伦敦把HeⅡ看成是由玻色子组成的玻色气体,遵守玻色统计规律,玻色统计允许不同粒子处于同一量子态中。伦敦证明了存在一个临界温度Tc,当温度低于Tc时,一些粒子会同时处于零点振动能状态(即基态),称为凝聚,温度愈低,凝聚到零点振动能状态的粒子数就愈多,在绝对零度时,全部粒子都凝聚到零点振动能状态,以上现象称为玻色-爱因斯坦凝聚。L.蒂萨认为HeⅡ的超流动性起因于玻色-爱因斯坦凝聚。由于已凝聚到基态的HeⅡ原子具有最低的零点振动能,故有极大的平均自由程,能够几乎无阻碍地通过极细的毛细管。蒂萨首先提出二流体型,后来L.D.朗道修正和补充了此模型。二流体模型认为HeⅡ由两部分独立的、可互相渗透的流体组成,一种是处于基态的凝聚部分,熵等于零,无粘滞性,是超流体;另一种是处于激发态(未凝聚)的正常流体,熵不等于零,有粘滞性。两种流体的密度之和等于HeⅡ的总密度,温度降至λ点时,正常流体开始部分地转变为超流体,温度愈低,超流体的密度愈大,而正常流体的密度则愈小,在绝对零度时,所有原子都处于凝聚状态,全部流体均为超流体。利用这个二流体模型可解释关于液氦的许多力学和热学性质。